[К. Галичский - "Компьютерные системы в телефонии"]

Copyright (C) К. Галичский, 2002

Глава 1. Организация телефонных сетей
1.1 Телефонная сеть общего пользования
1.2 Внутренние сети
1.3 Мобильные сети
1.4 Интернет-телефония
1.5 Компьютерная телефония
1.6 Интеллектуальные сети

1.4 Интернет-телефония

Телефония основана на коммутации соединений. Иными словами, для создания со­единения между абонентами на всё время разговора выделяются каналы для пере­дачи звука.

В цифровых сетях передачи данных, например, в Интернет, используется иной принцип – коммутация пакетов. Пакет – это блок двоичных данных, которыми обме­ниваются оконечные устройства сети (например, обычные компьютеры). Пересылка пакета из одного узла в другой напоминает отправку письма или телеграммы, то есть не требует установления постоянного соединения между этими двумя узлами, что позво­ляет значительно экономить внутренние ресурсы сети.

Телефонные соединения вполне можно реализовывать на основе сети с коммутаци­ей пакетов. Именно эту задачу и решает так называемая Интернет-телефония. Око­нечные устройства такой «виртуальной» телефонной сети, работающей поверх Интер­нет, непрерывно обмениваются пакетами прямо в процессе разговора. Пакеты содержат цифровые данные, кодирующие звук. Сама сеть не гарантирует надежной доставки от­дельных пакетов, они могут теряться, дублироваться и приходить в перепутанном по­рядке из-за случайных задержек, свойственных сетям коммутации пакетов. Тем не ме­нее, как показывает опыт, в этих условиях всё же удаётся решить большинство техни­ческих проблем и добиться приемлемого качества связи.

Главный козырь Интернет-телефонии – себестоимость: минута разговора в случае междугородной и, тем более, международной связи оказывается во много раз дешевле, чем при использовании традиционной связи по сетям с коммутацией соединений. Как показывает опыт, это в значительной степени оправдывает даже сравнительно низкое качество звука, присущее современной Интернет-телефонии.

Сценарии соединения

Передача телефонных переговоров по сети Интернет может осуществляться по не­скольким сценариям.

Самый простой способ состоит в использовании обычных мультимедиа-компью­те­ров, подключённых к Интернет (рис. 1.19). На обоих компьютерах требуется запустить специальную программу, например, Microsoft NetMeeting, которая на одном конце пре­образует звук от микрофона в пакеты данных, а на другом конце преобразует эти па­кеты обратно в звук и проигрывает его в динамик. Если один из компьютеров (или оба) оснащен видеокамерой, то можно передавать и изображение, показывая его на дисплее собеседника.

Адресация узлов в сети Интернет совершенно не похожа на телефонные номера. Поэтому при установлении соединения приходится указывать так называемый IP-адрес компьютера, на который необходимо «позвонить». Но во многих случаях IP-адрес ком­пьютера динамически меняется при очередном подключении, поэтому чаще для соеди­нения используют специальный узел сети – сервер каталогов (directory server). Этот сервер хранит списки зарегистрировавшихся на нем пользователей, причем каждый из них имеет уникальное имя в виде строки символов (обычно в формате адреса электрон­ной почты: user@server.net) или традиционный номер, состоящий из цифр.

Когда пользователь А запускает на своем компьютере программу Интернет-телефо­нии, она автоматически сообщает серверу каталогов, что пользователь А доступен для входящих звонков и имеет такой-то IP-адрес. После этого на другом компьютере (поль­зователя Б) можно набрать символьное имя этого пользователя, программа запросит сервер каталогов, какой IP-адрес соответствует этому имени, а затем начнет передачу специальных пакетов данных на полученный адрес компьютера А. В результате, поль­зователь А получит уведомление о входящем Интернет-звонке (например, через дина­мики) от пользователя Б. Если А ответит на звонок (выбором пункта меню в програм­ме), то соединение будет окончательно установлено.

Рис. 1.19. Соединение «компьютер- компьютер»

Вместо компьютера с установленной программой Интернет-телефонии можно ис­пользовать так называемый IP-телефон. Это устройство, внешне выглядящее как обыч­ный телефон (рис. 1.20), но подключаемое непосредственно к сети передачи данных. В отличие от компьютера, который бывает включён не всегда, IP-телефон, как и обычный телефон, всегда готов к работе.

Рис. 1.20. IP-телефон Cisco IP Phone 7960

Итак, компьютеры и IP-телефоны являются разновидностями терминалов Интер­нет-телефонии (рис. 1.21), то есть играют роль абонентских устройств.

Рис. 1.21. Терминалы Интернет-телефонии

Сервер каталогов используется для коммутации звонков, правда только на этапе ус­тановления соединения: голосовые потоки в виде пакетов данных идут напрямую ме­жду терминалами, а не через него. Тем не менее, сервер каталогов можно в некото­ром смысле уподобить АТС.

Еще одна разновидность узлов в сети Интернет-телефонии – шлюз (гейтвей, gate­way). Это «посредник» между традиционной телефонной сетью и сетью передачи дан­ных, преобразующий звонки одного типа в другой и обратно. С его помощью можно совершать звонки между терминалами Интернет-телефонии и абонентами ТфОП в обо­их направлениях (рис. 1.22).

Рис. 1.22. Соединение «компьютер-телефон» через шлюз

Если звонок инициирует пользователь Интернет-терминала, то он просто вводит номер вызываемого абонента ТфОП. Далее все происходит автоматически: терминал связывается со шлюзом, IP-адрес которого известен (введён заранее во время настройки терминала), посылая ему специальные пакеты данных, а шлюз, в свою очередь, делает исходящий звонок через ТфОП.

Если звонок инициирует абонент ТфОП, то сценарий несколько сложнее. Во-пер­вых, абонент должен набрать телефонный номер шлюза в ТфОП. Затем шлюз отвечает на звонок и проигрывает приглашение ввести (с помощью тонового набора) адрес вы­зываемого терминала в сети Интернет. При этом возможно набирать только цифры; следовательно, в качестве адреса Интернет-терминала можно вводить либо IP-адрес, либо некоторую уникальную последовательность цифр, что сильно ограничивает воз­можности применения описываемого сценария.

Шлюз может также заниматься биллингом (тарификацией) предоставляемой ус­лу­ги.

Шлюз может представлять собой компьютер или специализированное устройство. Существует ряд шлюзов, доступных через WWW-страницу: пользователь загружает её в свой Web-браузер, вводит в появившейся форме номер ТфОП, после чего шлюз орга­низует соединение с компьютера пользователя на введённый номер.

Примером такой услуги является Web-сайт www.dialpad.com, который первое время после своего открытия вообще не брал платы за звонки, получая доход за счёт размеще­ния баннерной рекламы, позволяя бесплатно совершать звонки в США из любой точки мира.

Очень важен также сценарий соединения «телефон-Интернет-телефон» (рис. 1.23). Этот способ соединения позволяет совершать междугородные и международные звон­ки с телефона на телефон по исключительно низким тарифам, что обуславливает широ­кое распространение этой услуги.

Рис. 1.23. Соединение абонентов ТфОП через Интернет

Внутренняя сеть

На основе технологий Интернет-телефонии можно строить внутренние телефонные сети. Этот случай будет рассмотрен позднее в разделе «Мини-АТС на основе Интернет-телефонии (IP-PBX)» на с. 29.

Две внутренние телефонные сети можно соединить между собой посредством Ин­тернет: при этом с телефона одной сети можно звонить на телефоны из другой сети со­вершенно прозрачно, как будто сети соединены через ТфОП. Любой пользователь мо­жет звонить со своего компьютера через шлюз на телефоны в локальной сети (и наобо­рот).

Интересной представляется идея предоставления автоматических сервисов, харак­терных для обычной телефонии, через Интернет-телефонию. Например, автосекретарь и голосовая почта полезны и в случае Интернет-звонков.

H.323

Международный союз электросвязи (IUT-T) предложил стандарт H.323 для постро­ения сетей Интернет-телефонии. Этот стандарт охватывает практически все аспекты создания таких сетей и в настоящее время является наиболее распространённым. На­пример, упоминавшаяся выше программа Microsoft NetMeeting поддерживает именно H.323. Эта программа бесплатно входит в состав последних версий популярных опера­ционных систем семейства MS Windows (Windows ME, Windows 2000, Windows XP), поэтому можно сказать, что на абсолютное большинство персональных компьютеров во всем мире, подключённых к Интернет, можно сделать «виртуальный» звонок с ис­пользованием протоколов H.323.

Сети H.323 ориентированы на интеграцию с обычными телефонными сетями и рас­сматриваются как сети ISDN, работающие поверх сетей передачи данных – TCP/IP (Интернет), сетей IPX, Ethernet, Fast Ethernet, Token Ring и т. д. Стандарт H.323 содер­жит большое количество протоколов, связанных с регистрацией оборудования, различ­ными сценариями установления соединений, передачей речи, видео и данных, аутенти­фикацией пользователей, тарификацией и многими другими задачами. Эти протоколы будут рассмотрены в главе3.

Согласно рекомендации H.323, сеть состоит из следующих устройств: терминалов (Terminal), шлюзов (Gateway), привратников (Gatekeeper) и устройств управления кон­ференциями (Multipoint Control Unit – MCU), образующих так называемую зону (рис. 1.24).

Рис. 1.24. Зона сети H.323

Терминалы и шлюзы уже рассматривались выше.

Привратник управляет одной зоной сети, причем зона может состоять из несколь­ких территориально удалённых сегментов, соединённых с помощью шлюзов. В при­вратнике сосредоточен весь основной «интеллект» сети: он отвечает за регистрацию оконечного оборудования, входящего в зону, за контроль прав доступа, за номерной план, тарификацию услуг, за управление пропускной способностью сети. Таким обра­зом, привратник ведёт учёт абонентов и занимается преобразованием их адресов в IP-адреса, то есть является своего рода сервером каталогов. Фактически привратник игра­ет в сети роль АТС, хотя и участвует только в установлении соединения между прочи­ми узлами, а передачей пакетов во время разговора занимается нижележащая инфра­структура сети передачи данных.

Устройство управления конференциями (MCU) отвечает за организацию соедине­ний между тремя и более участниками. В зависимости от возможностей сети передачи данных, конференция может быть централизованной или децентрализованной, а также смешанной. Каждый участник конференции может связываться с MCU напрямую; при этом требуется более дорогое оборудование MCU, которое занимается смешиванием звуковых потоков. При децентрализованном режиме используется возможность много­адресной рассылки пакетов (IP multicasting) нижележащей сети передачи данных. В этом последнем случае MCU отвечает только за организацию конференции и поддер­жание списка участников. При этом смешиванием голосовых потоков занимаются око­нечные устройства, что увеличивает их сложность и стоимость. Режим конференции может меняться при подключении очередного участника.

Все устройства сети H.323 могут быть реализованы в виде компьютеров или специ­ализированных устройств, причем один узел сети может совмещать сразу несколько ро­лей, например, быть привратником и шлюзом. Кроме того, функции привратника могут совмещаться в «гибридной» мини-АТС (IP-PBX), к которой подключаются обычные телефоны и Интернет-терминалы.

Масштабируемость и надежность

В традиционной телефонной сети большинство всех функций оказывается сосредо­точенным в одном узле – АТС. Это накладывает ограничение на максимальное коли­чество абонентов, то есть на масштабируемость АТС, а также на надежность сети.

В сетях H.323 функции традиционной АТС распределены между разными узлами, причем каждый узел может быть многократно продублирован. Например, в одной зоне сети может быть несколько резервных привратников, а конференции можно распреде­лять по нескольким MCU. Таким образом, архитектура сетей H.323 обеспечивает очень хорошую масштабируемость и надежность.

Кроме того, в одной локальной сети может быть несколько зон (несколько приврат­ников).

Кодеки

Передача звука в виде пакетов данных предполагает сжатие звуковых данных для минимизации трафика, поэтому используются различные алгоритмы динамического сжатия этих данных на передающей стороне и восстановления их на принимающей. Эти алгоритмы называются кодеками (codec) – сокращение от КОдер + ДЕКодер.

В большинстве сетей передачи данных отсутствует гарантия доставки переданных данных, либо механизмы обеспечения такой гарантии создают недопустимо большие задержки при передаче данных в реальном времени. Поэтому кодеки должны быть го­товы к потере некоторого процента переданных пакетов, не приводя при этом к су­ще­ственному ухудшению качества связи.

Как правило, для большинства кодеков главное – не качество звука, а используемая полоса пропускания. Так, для качественной передачи речи без сжатия требуется ско­рость передачи данных 64 Кбит/с. Существуют кодеки, которые позволяют обойтись 1–2 Кбит/с, например, Voxware RT24 даёт поток 2,4 Кбит/c при умеренном качестве звука.

Другой немаловажный параметр для кодека – вычислительная сложность. Обычно кодеки с высокой степенью сжатия требуют больших вычислительных ресурсов, что приводит к удорожанию оборудования.

Размер одного пакета, пересчитанный в миллисекунды, определяет типичную за­держку звука. Задержка в 200 мс уже заметна на слух, а при задержках около секунды о комфортном разговоре не может быть и речи.

По телефонным соединениям передаётся главным образом человеческая речь. Ко­деки, использующие этот факт для достижения наилучшего результата, называют воко­дерами. Они позволяют добиться очень сильного сжатия, однако качество звука обыч­но оставляет желать лучшего: голос собеседника может изменяться до неузнаваемости, напоминая компьютерный синтезатор речи, вещающий в гулком помещении с сильным эхом.

Международный союз электросвязи (ITU-T) стандартизовал ряд кодеков, которые широко применяются для передачи речи (таблица 1.1). Кроме того, в таблице приведён так­же широко применяемый кодек GSM Full Rate, стандартизованный Европейской орга­низацией телекоммуникационных стандартов (ETSI, European Telecommunications Stan­dards Institute).

Таблица 1.1. Стандартизованные кодеки

Кодек Год одобрения Поток, Кбит/c Длина кадра, мс Качество
(5-высокое,
4-обычное,
3-разбор­чивое)
Вычисли­тельная сложность, MIPS Принцип сжатия
G.711 1965 64 0,125 4,2 0 ИКМ-кодирование по A-закону или
m-закону
G.723.1 1995 5,3–6,4 30 3,7–3,9 16 MP-MLQ
G.726 1990 40, 32, 24, 16 0,125 4,3 (для 32 Кбит/с) 0 ADPCM (АДИКМ)
G.728 1992 16 0,625–2,5 4,3 20 – кодер13 – декодер LD-CELP (Low Delay Code Excited Linear Prediction)
G.729 1996 8 10 4 20 – кодер3 – декодер CS-ACELP (Conjugate Structure, Algebraic Code Excited Linear Prediction)
GSM Full Rate 1987 20 13 3,7 4,5  

Передача тонового набора и факсимильных сообщений

Пользователи Интернет-телефонии, соединяясь через шлюз с автоматическими сер­висами, доступными в ТфОП, нуждаются в тоновом наборе (DTMF). Проблема в том, что узкополосные кодеки, рассчитанные на передачу человеческой речи, безнадежно искажают тоны DTMF.

Для решения этой проблемы шлюзы IP-телефонии должны специально обрабаты­вать тоны DTMF, передавая их по сети данных в виде специальных пакетов, а искажён­ные тоны подавлять. Такая возможность предусмотрена в семействе протоколов H.323.

Схожая проблема возникает в еще большей степени при передаче факсимильных сообщений, если какой-либо сегмент соединения проходит через Интернет, как, напри­мер, на рис. 1.23. Таким образом, передача факсов через Интернет (Fax over IP), не­смо­тря на архаичность самой факсимильной связи в эпоху электронной почты, является ак­ту­альной проблемой. Она решается на уровне шлюзов, например, в соответствии с ре­ко­мендацией ITU-T T.38.

Видеоконференции

Литературщина! Бесконечное счастье не передается средствами видеоряда.
(В. Татарский, «Generation П»)

Помимо звука, вместе с Интернет-звонком может передаваться, в сущности, любая потоковая информация, лишь бы программное обеспечение с обеих сторон «понимало» друг друга.

Наиболее очевидным применением этой идеи является видеотелефония. Собствен­но говоря, стандарт H.323 появился на основе более раннего стандарта H.320, описыва­ющего организацию видеоконференций по сетям ISDN. Для передачи видео по Интер­нет в реальном времени, как и для аудио, требуется сжатие информации, которое осу­ществляется видеокодеками. ITU-T стандартизовал единый формат для видео CIF (288´352 пиксела) и QСIF (144´176), а также видеокодеки H.261 и H.263.

«Конференции данных»

Два или более пользователей, участвующие в H.323-соединении, могут также об­мениваться различными данными, например, пересылать друг другу файлы, тексто­вые сообщения, совместно редактировать растровое изображение на разделяемой «гри­фельной доске», а также совместно использовать приложения. Для организации подоб­ных «конференций данных» используются рекомендации ITU-T T.120 – T.128.

Особенности Интернет-телефонии

Важное преимущество IP-телефонии, помимо дешевизны связи и теснейшей инте­грации с компьютерами – это возможность шифрования трафика, свойственное переда­че данных через Интернет вообще.

Характерные недостатки, сильно сдерживающие распространение IP-телефонии – низкое качество звука, вызванное сильным сжатием данных, и большие временные за­держки звука (иногда до нескольких секунд), обусловленные многократной буфериза­цией данных на промежуточных узлах сети.

Тем не менее, с развитием широкополосной связи и распространением поддержки протокола RSVP среди Интернет-провайдеров эти проблемы должны постепенно ре­шиться. Пос­ледние условия достаточно легко выполнить в масштабах локальных сетей (интранет).

Значение Интернет-телефонии

Итак, Интернет-телефония используется в настоящее время в основном как деше­вое средство связи (но не всегда высокого качества). Тем не менее, это направление, очевидно, является будущим телефонии, как в применении к дальней связи, так и во внутренних сетях.





Хостинг от uCoz